Volume for Solid of Revolution

Revolve a curve or region about the x-axis or y-axis to create a solid in order determine its volume

Disk Method

Revolve the function y = f(x) about the x-axis over $a \le x \le b$

$$V = \pi \int_a^b [r(x)]^2 dx = \pi \int_a^b [f(x)]^2 dx$$

Revolve the function x = g(y) about the y-axis over $c \le x \le d$

$$V = \pi \int_c^d [r(y)]^2 dy = \pi \int_c^d [g(y)]^2 dy$$

Washer Method

Revolve two curves about the x-axis over $a \le x \le b$

$$V = \pi \int_a^b \left(r_{outer}^2 - r_{inner}^2 \right) dx = \pi \int_a^b \left[(f_{outer}(x))^2 - \left(f_{inner}(x) \right)^2 \right] dx$$

Revolve the function x = g(y) about the y-axis over $c \le x \le d$

$$V = \pi \int_c^d (r_{outer}^2 - r_{inner}^2) dy = \pi \int_c^d \left[(g_{outer}(y))^2 - (g_{inner}(y))^2 \right] dy$$

Determine the volume of the solid by revolving the function f(x) about the **x-axis** over the indicated interval. 1. $f(x) = \frac{1}{x^2}$ over $1 \le x \le 4$

3.
$$f(x) = 4 - x^2$$
 over $0 \le x \le 2$

Find the volume of the solid obtained by rotating the region about the **x-axis** 5. $y = x^2 + 2$, $y = 10 - x^2$

Determine the volume of the solid by revolving the function f(x) about the **y-axis** over the indicated interval. 9. $x = \sqrt{y}$, x = 0, $1 \le y \le 4$

10.
$$x = \sqrt{\sin(y)}, x = 0, 0 \le y \le \pi$$

11.
$$x = 4 - y$$
, $x = 16 - y^2$

Find the volume of the solid by rotating the region bounded by the curves about the indicated axis. 13. y = 16 - 2x, y = 6, x = 0 about the **x-axis**

14. $y = x^2 + 2$, y = 6 about the **x-axis**

16. y = 32 - 2x, y = 2 + 4x, x = 0 about the **y-axis**

17. $y = x^3$, $y = \sqrt[3]{x}$, $x \ge 0$ about the **y-axis**

