Improper Integrals

In order to use The Fundamental Theorem of Calculus the integrand needs to be continuous over a closed and bounded interval [a, b]. Then we have the following.

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

The question now is what happens when we do not satisfy the original assumptions of the function being **continuous** or the interval we have an **infinite interval**? The answer is we have an improper Integral. Again, we need to consider cases and types.

Type 1 Infinite Intervals $[a, \infty)$ or $(-\infty, b]$ or $(-\infty, \infty)$

We still require that the integrand be a continuous function over the interval. Then we will have the following definitions.

Case 1
$$[a, \infty)$$

Def $\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$ for all $a < t$
Def- we say the improper integral $\int_{a}^{\infty} f(x)dx$ **converges**,
if the limit $\lim_{t \to \infty} \int_{a}^{t} f(x)dx$ exists and is finite (a number).
Notation $\int_{a}^{\infty} f(x)dx < \infty$
Def- we say the improper integral $\int_{a}^{\infty} f(x)dx$ **diverges**,
if the limit $\lim_{t \to \infty} \int_{a}^{t} f(x)dx$ does not exist or is infinite.
Notation $\int_{a}^{\infty} f(x)dx = \infty$

Case 2 $(-\infty, b]$ **Def** $\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$ for all t < b **Def**- we say the improper integral $\int_{-\infty}^{b} f(x)dx$ **converges**, if the limit $\lim_{t \to -\infty} \int_{t}^{b} f(x)dx$ exists and is finite (a number). Notation $\int_{-\infty}^{b} f(x)dx < \infty$ **Def**- we say the improper integral $\int_{-\infty}^{b} f(x)dx$ **diverges**, if the limit $\lim_{t \to -\infty} \int_{t}^{b} f(x)dx$ does not exist or is infinite. Notation $\int_{-\infty}^{b} f(x)dx = \infty$

Case 3
$$(-\infty, \infty)$$

Def $\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$ for some c in $(-\infty, \infty)$
Def- we say the improper integral $\int_{-\infty}^{\infty} f(x)dx$ **converges**,
if both improper integrals $\int_{-\infty}^{c} f(x)dx$ and $\int_{c}^{\infty} f(x)dx$ converge.
Notation $\int_{-\infty}^{\infty} f(x)dx < \infty$
Def- we say the improper integral $\int_{-\infty}^{\infty} f(x)dx$ **diverges**,
if at least one improper integral $\int_{-\infty}^{c} f(x)dx$ or $\int_{c}^{\infty} f(x)dx$ diverge.
Notation $\int_{-\infty}^{\infty} f(x)dx = \infty$

Type 2 Discontinuous Integrands

We have a point in a closed and bounded interval [a, b] where our function is discontinuous. That is, f(x) is discontinuous for some c in [a, b]

Case 1 The function f(x) is continuous over [a, b) and is discontinuous at the right endpoint b.

Def $\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$ for a < t < bIf the limit exists and is finite we have **convergence**. Else, we have **divergence**.

Notation $\int_{a}^{b} f(x) dx < \infty$ for convergence; $\int_{a}^{b} f(x) dx = \infty$ for divergence.

Case 2 The function f(x) is continuous over (a, b] and is discontinuous at the left endpoint a.

Def $\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx$ for a < t < bIf the limit exists and is finite we have **convergence**. Else, we have **divergence**. Notation $\int_{a}^{b} f(x)dx < \infty$ for convergence; $\int_{a}^{b} f(x)dx = \infty$ for divergence.

Case 3 The function f(x) has a discontinuity at some c in [a, b] that is not at an endpoint.

Def
$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$
 for $a < c < b$

If both improper integrals $\int_{a}^{c} f(x)dx$ and $\int_{c}^{b} f(x)dx$ converge, then the improper integral $\int_{a}^{b} f(x)dx$ converges. Else, we have **divergence**.

Notation $\int_{a}^{b} f(x) dx < \infty$ for convergence; $\int_{a}^{b} f(x) dx = \infty$ for divergence.