Differentiability

Def- We say a function is differentiable at x = a, if $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists

Note-
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 exists

Def- We say f is differentiable on an open interval *I* if it is differentiable for every number in the interval I

Note-I can be (a, b) or (a, ∞) or $(-\infty, b)$

Theorem

If f is differentiable at x = a, then f is continuous at x = a

Proof Assume f is differentiable at x = a

Then
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 exists

So
$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}x - a$$

$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} x - a \right] = \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \right] \lim_{x \to a} [x - a] = f'(a) \cdot 0 = 0$$

$$\rightarrow \lim_{x \to a} [f(x) - f(a)] \rightarrow \lim_{x \to a} [f(x)] - \lim_{x \to a} [f(a)] = 0$$

$$\rightarrow \lim_{x \to a} [f(x)] - f(a) = 0$$

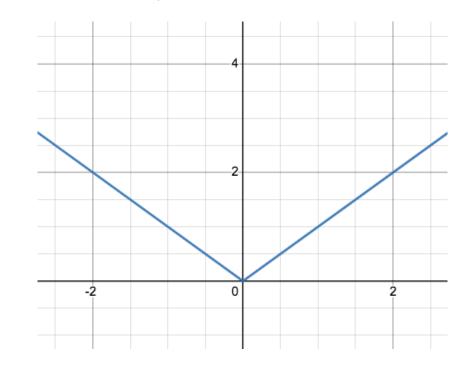
$$\rightarrow \lim_{x \to a} [f(x)] = f(a)$$
Thus f is continuous at $x = a$

Thus f is continuous at x = a

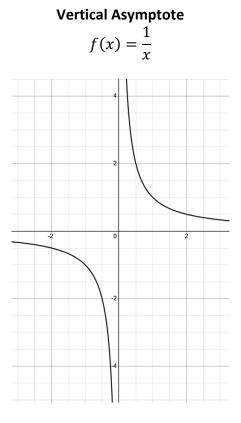
Contrapositive is Valid

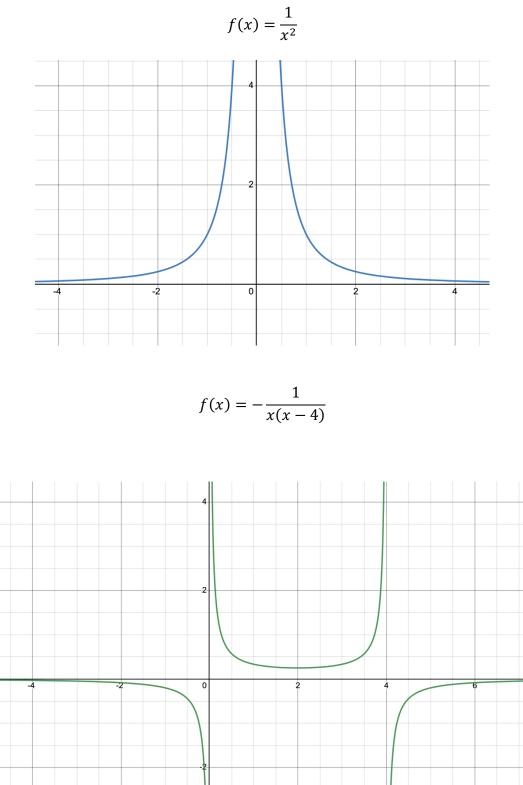
If f is discontinuous at x = a, then f is not differentiable at x = a

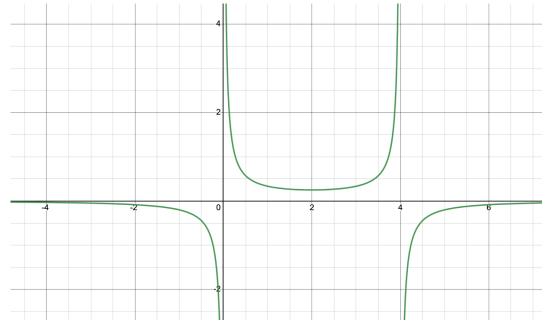
Converse is Invalid



If a function is continuous at x = a, then f is differentiable at x = a

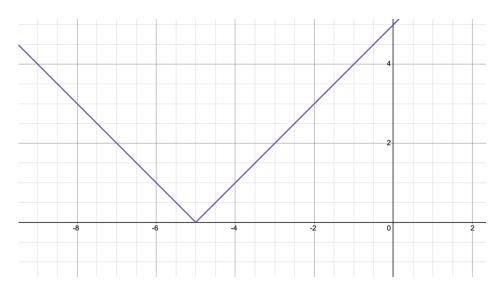




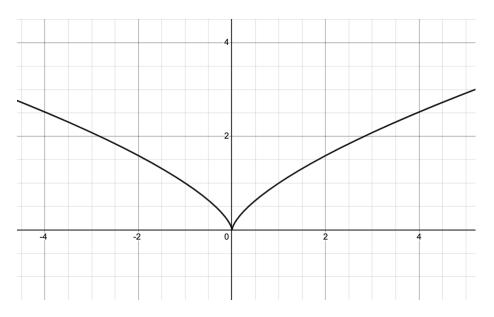


Additional Circumstances of Non-Differentiability

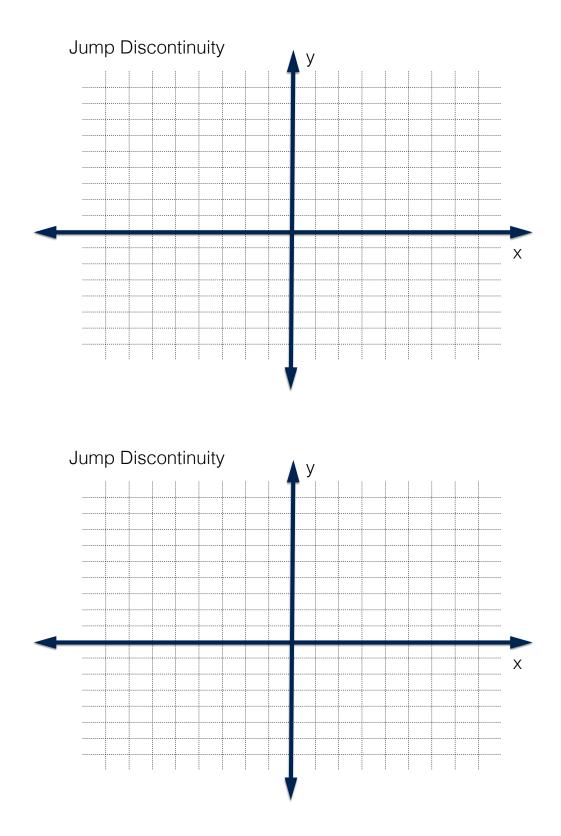
$$f(x) = |x+5|$$



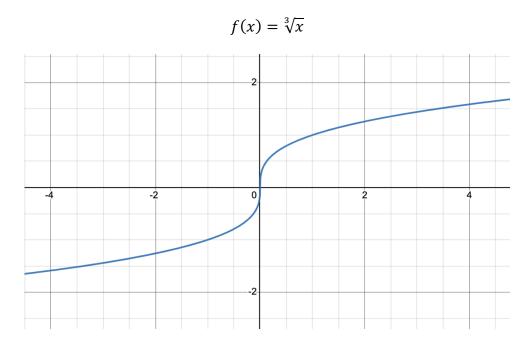
 $f(x) = x^{2/3}$



Jump Discontinuity



Vertical Tangent



The function f is continuous at x = a but has a vertical tangent line at x = a

 $\lim_{x\to a}|f'(x)|=\infty$