
Calculus	of	Parametric	Equations	
	
Let	C	represent	a	curve	in	Parametric	Form	(Parametric	Equations)	
	

𝑥 = 𝑓(𝑡)	
	𝑦 = 𝑔(𝑡)	
	𝑡 ∈ 𝐼	

	
	
we	would	like	to	determine	the	derivative	of	the	function	of	x	that	is	described	by	the	curve	C	
parametrically.	
	

	
	

Note-	We	can’t	use	𝑦 = 𝑓(𝑥)	as	𝑓	is	used	in	describing	the	variable	𝑥.		Thus,	we	really	would	
like	to	know	what	is	dy/dx?	
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That	is,		
	

Derivative	
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The	second	derivative	can	be	found	similarly,	but	I	will	let	,-

,.
= 𝑢(𝑡)	as	it	is	a	function	of	t.	
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That	is,	
	

Second	Derivative	
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Area	Under	a	Curve	

	
	

The	curve	C	is	above	the	x-axis	
	

The	curve	C	is	traversed	(move	through)	once	as	t	increases	from	α	to	β,	𝜶 ≤ 𝒕 ≤ 𝜷	
	

x	is	increasing,	so		,.
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Substitute	
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Note- What happens when	x is decreasing over 𝜶 ≤ 𝒕 ≤ 𝜷?  
          That is, ,.
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< 0? 

 

 
 

Substitute	
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Arc	Length	
	

					Let	C	be	a	curve	defined	be	Parametric	Equations	(𝑥 = 𝑓 𝑡 , 𝑦 = 𝑔 𝑡 , 𝛼 ≤ 𝑡 ≤ 𝛽)	where	𝑓/	
and	𝑔/are	continuous	for	𝛼 ≤ 𝑡 ≤ 𝛽	and	C	is	tranverse	exactly	once	as	t	increases	from	𝛼	to	𝛽.	
Then,	we	can	determine	the	arc	length	of	the	curve	from	the	initial	point	to	the	terminal	point.		
	

	
	

	
	
Recall	the	arc	length	formula	where		𝑺 = 𝒅𝒔	
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Assuming		,.
,0
> 0			as	illustrated	
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Note-	Assuming		,.
,0
< 0			or	x	is	decreasing	
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Orientation	does	not	make	a	difference	when	it	comes	to	arc	length!	
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Surface	Area	

𝑺𝑨 = 𝟐𝝅𝒓𝒅𝒔	

	
	

					Let	C	be	a	curve	defined	be	Parametric	Equations	(𝑥 = 𝑓 𝑡 , 𝑦 = 𝑔 𝑡 , 𝛼 ≤ 𝑡 ≤ 𝛽)	where	𝑓/	
and	𝑔/are	continuous	for	𝛼 ≤ 𝑡 ≤ 𝛽	and	C	is	tranverse	exactly	once	as	t	increases	from	𝛼	to	𝛽	
and	assuming	𝑔 𝑡 ≥ 0.	
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Our	Surface	Area	formulas	hold	up.	
	
Rotate	a	Parametric	Curve	C	about	the	x-axis	
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Rotate	a	Parametric	Curve	C	about	the	y-axis	
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