Calculus of Parametric Equations

Let C represent a curve in Parametric Form (Parametric Equations)

x = f(t)
y =g(t)
tel

we would like to determine the derivative of the function of x that is described by the curve C

parametrically.
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Note- We can’tuse y = f(x) as f is used in describing the variable x. Thus, we really would
like to know what is dy/dx?
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That is,

Derivative
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The second derivative can be found similarly, but | will let d—z = u(t) asitis a function of t.
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That is,

Second Derivative
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Area Under a Curve

The curve Cis above the x-axis

The curve Cis traversed (move through) once as t increases fromatoB, a <t<f
. . dx
xis increasing, so —- > 0

Substitute

x=b t=p
A= yax= j g(Of (Dt




Note- What happens when x is decreasing over a < t < 8?
Thatis, = < 07

Substitute

t=a t=p0

x=b
A= j ydx = j JUCIHOUEE j g(Of (Dt
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Arc Length

Let C be a curve defined be Parametric Equations (x = f(t),y = g(t),a <t < B) where f'
and g'are continuous for « < t < 8 and C is tranverse exactly once as t increases from a to f5.
Then, we can determine the arc length of the curve from the initial point to the terminal point.

x=F(t)
y=g(t)
ast<p
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Assuming d—: > 0 asillustrated
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Note- Assuming d—: < 0 orxisdecreasing
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Orientation does not make a difference when it comes to arc length!
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Surface Area

SA =jZ1trds

Let C be a curve defined be Parametric Equations (x = f(t),y = g(t),a <t < B) where f'
and g'are continuous for @« < t < [ and C is tranverse exactly once as t increases from a to 8
and assuming g(t) = 0.

Since s = f\/ y ® dt we have ds = \/(%)2 + (3—3:)2 dt

Our Surface Area formulas hold up.

Rotate a Parametric Curve C about the x-axis

su= [/ 2 () + () = [ omy (%) 4(2) a

Rotate a Parametric Curve C about the y-axis
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